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INTRODUCTION

The body clock regulation is quite complex to describe in a sim-
ple manner. For instance, when the body is symbolized as a ma-
chine, that operates all of its staff in a synchronized way, continu-
ously affected by the frame of time and light propensity. As a 
result, environmental factors such as light and darkness, as well 
as the body clock (endogenous circadian rhythms) work in uni-
son to improve hemostasis, including the cell cycle, body tem-
perature, feeding, metabolism, and, perhaps most importantly, 
the sleep-wake cycle as well as memory formation and consoli-
dation [1].

Physiological, biological, and behavioural processes in mam-
mals are regulated by circadian rhythms. The endogenous bio-
logical clock is located in the suprachiasmatic nuclei (SCN), a 
small group of hypothalamic nerves, recognized as the master 
circadian pacemaker. It is positioned unswervingly above the op-
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tic chiasm [2,3] synchronically and functionally regulates the 
circadian rhythms of mammals throughout the 24-hour oscil-
lations and secures every essential physiological process [4,5].

In the 1970s, the role of SCN to drive the circadian rhythm was 
coined for the first time, but the molecular basis of the effects on 
physiology and behaviour in mammals finally became clear in 
the late 1990s. The SCN electrical activity and divergent state ac-
tivity depend on circadian variations (day-night oscillation) [6]. 
Any unfavourable condition in SCN abolishes the regulatory 
mechanism. On the contrary, upon restoration of SCN, the circa-
dian rhythms move smoothly [7-11].

REGULATORY MECHANISM OF SCN AND 
CLOCK GENE ACTIVATION

The photoreceptors of the retina are sensitive to light intensity. 
Expressed photopigment melanopsin is detected by the rods and 
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cones as well as photosensitive retinal ganglion cells. Upon re-
ceiving the processed–light/signals to the SCN via the retinohy-
pothalamic tract, finally the intracellular molecular clock mecha-
nism is activated through enhancement of positive (BMAL1 and 
CLOCK as activators) and negative [period (PER) and crypto-
chrome (CRY) proteins] elements [11,12].

Interaction between clock function and 
memory formation

As the body maintains clock dependent gene expression/acti-
vation/suppression, particular genes and genetic interactions are 
responsible for memory and memory formation. However, the 
original roles of local brain circadian clocks in memory forma-
tion remain unclear. 

The molecular mechanisms facilitating circadian rhythm gen-
eration in the SCN are well studied: BMAL1 and CLOCK form a 
heterodimer and trigger the transcription of their target genes, 
including the period (PER1, PER2) and the cryptochrome (CRY1, 
CRY2) [13-18]. PERs and CRYs both genes inhibit the BMAL1/
CLOCK-mediated transcription in a negative feedback loop, 
thereby generating circadian transcriptional rhythms [13,14].

Are clock genes being memory genes?
Drosophila melanogaster, a model organism, showed time-de-

pendent eclosion rhythm depending on their strain. It proposes a 
genetic basis for the circadian regulation of this process, prompt-
ing a forward mutagenesis screen that identified the first clock 
gene, period (PER) [19-21]. Interestingly, these mutations cause 
correlative changes in the circadian locomotor activity rhythm in 
adult flies. 

It is important to resolve the confusion about the relationship 
between the clock gene and memory formation. This relationship 
is strongly confirmed by the phenomenon where the clock gene 
independently forms memory and has roles in eclosion or the gen-
eration of circadian rhythms [22-26].

CIRCADIAN RHYTHMS AND MEMORY 

The impact of time-of-day effects and circadian rhythms on 
cognitive performance and memory formation in humans [27-
29] have been studied for decades, and there has been a renewed 
interest in this topic in light of an increased understanding of the 
genetic, molecular and systems-level events that underlie these 
complex processes [30-34]. 

Recent discoveries have shown a high level of integration be-
tween cellular signalling cascades [such as the cyclic AMP (cAMP), 
mitogen activated protein kinase (MAPK), and cAMP-responsive 
element binding protein (CREB)] pathway, that regulate circadian 
rhythms and memory processing. Disruption of circadian rhythms 
has negative consequences on memory and cognitive performance 
in various tasks and several species [35].

Functions of melatonin 
Melatonin, the hormone of darkness (N-acetyl-5-methoxytryp-

tamine, MTG), had been first identified as the hormone of the pi-
neal gland secreted into the cerebrospinal fluid, and it regulates 
patterns of sleeping and awakening in humans [36,37].

Over the past decade, melatonin’s impact on chronobiological 
effects has been vastly scrutinized. Remarkably, melatonin affects 
the firing rate of the mammalian SCN and hippocampal CA1 neu-
rons [38-41]. Therefore, circadian hormonal modulation of neu-
ronal firing could be a general mechanism throughout the brain. 

As a signalling molecule, melatonin is widely expressed through-
out vertebrate and invertebrate human, zebrafish (Danio rerio), 
sea slugs (Apylsia californica), mice (Mus musculus), and flies (D. 
melanogaster) [42-46] and is secreted in a time-of-day-dependent 
manner [47]. Recently, melatonin synthesis has been suggested 
to interact with core circadian mechanisms [48].

Neurohormone MTG is an anti-inflammatory, antioxidant, and 
neuro-protectant agent. It plays numerous physiological roles 
as a modulator of the biological clock. Specifically, the sleep-wake 
cycle regulation of circadian rhythms, protection of mitochon-
dria [49-55]. Furthermore, MTG is also believed to be involved 
in the modulation of learning and memory also enhance cogni-
tive capacity [56-58], via its binding to receptors widely distribut-
ed throughout the brain [59-62]. 

Researchers also indicate that MTG may exert particular thera-
peutic effects in patients with Alzheimer’s disease (AD) and Par-
kinson’s disease [63-65] by protecting against neurotoxicity in-
duced by amyloid-beta (Aβ) peptides [66-68]. Interestingly, some 
studies have shown that MTG attenuates pyramidal neuronal cell 
damage in the hippocampus in global cerebral ischemia [69-75].

Melatonin and memory formation 
As the levels of melatonin and CREB expression gradually de-

crease with age in the hippocampus and prefrontal cortex [76-80]. 
Both are considered with the age-dependent memory formation 
or memory preservations or cognitive deficits mechanism [81]. 

To date, melatonin administration shows memory enhance-
ment effects in multiple memory and age-related or impaired an-
imal models [74,82-85]. 

The activation of CREB via phosphorylation in the hippocam-
pus is an important signalling mechanism for enhancing memo-
ry processing. CREB is a well-studied transcription factor that 
mediates intracellular signalling events that regulate the circadian 
rhythms of memory [86], long-term memory [87], and a variety 
of downstream effectors in the hippocampus and enhance hip-
pocampal memory processing [88]. 

Melatonin has been shown to phosphorylate CREB in animal 
models [89,90]. That may enhance memory, but the signalling 
mechanism between melatonin and CREB is hitherto unestab-
lished. 

Melatonin receptors have been identified (in vivo consideration) 
in the hippocampus of various animals [82-94], and activated via 
specific receptors in the hippocampus cells. Melatonin has been 
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identified as a protector of pyramidal cells in the hippocampus and 
have long-term potentiation from damage in the case of non-re-
ceptor mediated actions [41]. Overall, the protective action of mel-
atonin may be receptor-independent via free radical generating 
mechanisms [80] related to learning and memory [50].

To justify the inner mechanism, the in vitro assessment in HT-
22 cell line infers that melatonin treatment increases the level of 
Raf, ERK, p90RSK, CREB, and BDNF expression by consequence 
of phosphorylation. The expressed genes are associated with long-
term memory formation and consolidations and referred that 
melatonin is associated with a variety of signaling mechanisms 
including the ERK and MAPK pathways (Figure 1) [82,95].

In recent times, a group of scientists from Tokyo Medical and 
Dental University found that melatonin and its metabolites [N1-
acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-
5-methoxykynuramine (AMK) in the brain] promote the forma-
tion of long-term memories in mice and protect against cognitive 
decline [96].

Melatonin in the glymphatic system and cognitive 
functioning 

It has been reported that melatonin is attenuated during the 
ageing process and the patients with AD had a substantial reduc-
tion of this hormone. However, melatonin supplementation was 
found to minimize Aβ neurotoxicity and formation while enhanc-
ing cognitive efficiency [97-103].

Early treatments with melatonin may be one of the most effec-
tive methods for developing approaches to postpone or avoid Aβ 
and memory problems at this stage of the disease [103]. Melato-
nin crosses the blood-brain barrier in direct contrast to tradition-
al antioxidants, is relatively free of toxicity, and is a possible thera-
peutic candidate in AD care, possibly due to enhancing the quality 
of sleep and clearance of Aβ42 plaque by increasing the efficien-
cy of the glymphatic system. Specifically, by promoting the glym-
phatic system function, deep sleep is essential in this clearance 

phase [104-108].
By the continuous interchange of fluids, the glymphatic system 

is a well-established waste clearance pathway of the brain. A pri-
mary driver of glymphatic clearance is sleep [109-112]. Neverthe-
less, research has started to appear on a wealth of other lifestyle 
choices such as sleep quality, amount, physical activity, body pos-
ture improvements, omega-3, chronic stress, intermittent fasting, 
and low alcohol doses. Glymphatic activity is gradually decreased 
with AD and ageing due to the loss of the water channels, AQP4 
which facilitates fluid flow, with impaired interstitial solute clear-
ance and increased aggregation [113,114]. 

Interestingly, a significant number of AD patients report in-
creasing sleep disturbances along with the severity of the disease. 
AD and sleep disturbances signify a bidirectional relationship 
found before AD’s clinical onset, where sleep disturbances occur 
with the frequency of Aβ, but often cause soluble Aβ to increase. 
Overall, the findings support the hypothesis that it may reduce 
AD development due to melatonin’s ability to promote sleep and 
act as an antioxidant [115-117]. It, therefore, increases cognitive 
function and decreases neuropathology in the model of mice, like-
ly through glymphatic system activation (Figure 2) [118-122].

SLEEP AND COGNITION

Sleep cycle
Sleep is a multidimensional biochemical process to maintain 

homeostasis. It is categorized as a decline in consciousness and 
body responses to external stimuli, along with some brain elec-
troencephalogram changes [123,124]. Complex shifts in the pat-
tern of neuronal firing and neurotransmitter release [125] are fol-
lowed by the transitions from wake up to sleep and between sleep 
phases. Rapid eye movement sleep (REM) and non-rapid eye 
movement sleep (n-REM), which alternate throughout the night 
in a roughly 90-minute cycle. n-REM sleep is further divided into 
three stages (Figure 3) [126].

Figure 1. Specific melatonin receptor-mediated memory formation.
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Neurobiology and biochemistry of sleep and wakefulness
To understand the relationship between sleep and cognition, it 

is required to find the particular region of the brain, which is in-
volved in the sleeping and waking process. Richter’s studies on 
the lesion inferred that a “master” clock is located in the hypothal-
amus [127]. Loss of behavioural and endocrine rhythms resulted 
in ablation of the SCN. Sleep homeostasis prevails at bedtime and 
SCN output is decreased, thus promoting sleep, while SCN out-
put increases with little to no sleep pressure in the morning, thus 
promoting alertness [128-132].

Three primary factors affect the normal sleep and wake cycle: 
intrinsic circadian rhythm, behaviour of homeostatic inner sleep, 
and external factors [132-134]. Melatonin and light exposure are 
the core regulators of circadian rhythms. A few hours before bed-
time, the melatonin level upsurges and assists sleep, and light ex-
posure decreases melatonin secretion and disrupts sleep or im-
proves wake-up.

Gamma-aminobutyric acid, galanin, and adenosine are the 
sleep-promoting neurotransmitters. While orexin (hypocretin), 
glutamate, norepinephrine, dopamine, serotonin, histamine, ace-
tylcholine, and histamine are the key neurotransmitters that pro-

mote wakefulness. Wakefulness is a moment when a neurophysi-
ological perspective is formed. Through activation of reticular 
brain stem formation, secretion of norepinephrine, serotonin, and 
acetylcholine by the pons; and release of histamine by the poste-
rior hypothalamus. In the lateral and posterior hypothalamus and 
its peptides and hormones, orexin/hypocretin neurons play a vi-
tal role in controlling eating, reward-seeking, reacting to arousal 
and metabolic signals to change vigilance states, addiction and 
stress; and in stabilizing both wakefulness and sleep (Figure 4) 
[135-143]. 

Production of n-REM sleep is coordinated by the ventrolateral 
preoptic nucleus in the anterior hypothalamus. During n-REM 
sleep, norepinephrine, serotonin, acetylcholine, and histamine re-
lease are decreased. The initiation of REM sleep is coordinated by 
communication between aminergic neurons, which produce nor-
epinephrine, serotonin and histamine, and cholinergic neurons. 
During REM sleep, the aminergic neurons become nearly silent, 
while cholinergic neurons become highly active. These profound 
changes in a neurophysiological state seen across the sleep cycle, 
with the change of both in the activity of neuronal networks and 
the neurochemical milieu of the brain, suggest that sleep evolved 

Figure 3. Schematic presentation of normal sleep structure where a complete cycle of rapid eye movement (REM) sleep and non-REM (n-REM) 
sleep takes 3 hours to complete.
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as a period of altered cognitive processing [144,145].

Models of memory processing in sleep
A significant correlation between sleep and cognitive process-

ing has been well established over the past few years. In consoli-
dating various forms of memory, sleep plays an important role and 
leads to reflective and inferential thought. Although the mecha-
nism by which types of memories are stored in sleep remains un-
clear, numerous conceptual models have been presented. 

The association of sleep and cognition primarily correlates three 
distinct dimensions: 1) the effects of sleep deprivation on cogni-
tion, 2) the influence of sleep on declarative and non-declarative 
memory consolidation, and 3) some proposed models of how sleep 
facilitates memory consolidation in sleep. 

Wilson and colleagues [146,147] conducted a neuronal level 
experiment on brain function in rats, which unveiled underlying 
query regarding the processes that occur in the brain during sleep 
and enables memory. They proposed the principle of “replay” of 
brain activity, as well as the re-appearance in sleep of brain activ-
ity that occurred during prior wakefulness and learning. They 
observed that during a spatial behavioural task, hippocampal cells 
that fired together during subsequent slow-wave sleep tended to 
replicate sequences of neuronal firing that indicate motion along 
a spatial path. 

By measuring cerebral blood flow with positron emission to-
mography, Peigneux et al. [148] investigated regional brain activ-
ity in humans. They discovered that when subjects learned a route 
in a virtual town, hippocampal areas that were activated in hu-
mans showed increased activation during subsequent slow-wave 
sleep. Furthermore, the hippocampal activity also seen during 
slow-wave sleep was associated with the next day’s task results. A 
similar effect, in a serial response time task, was also confirmed 
by Maquet et al. [149].

In subjects who had recently completed the task, several re-
gions of the brain that were active during the execution of the task 
were significantly more active during REM sleep than in those 
who had not trained on the task. These outcomes can help re-
searchers to conclude that during sleep, recently encoded memo-
ries are reactivated and “replayed”. 

The theory of synaptic homeostasis, which suggests that a pro-
cess of synaptic downscaling occurs during sleep, particularly 
slow-wave sleep, is contrary to the notion that replaying during 
sleep improves memories [150,151]. 

As a means of conserving energy and space within the brain, 
total synaptic strength in the cortex is drastically reduced during 

this process. Such downscaling could indirectly gain learning and 
memory, according to some formulations of this model.

TIMING OF FOOD AND SLEEP 
ON COGNITION 

Many aspects of cognition, including excitement, concentra-
tion, and working memory, are known to be affected by the tim-
ing of sleep. In rodents, sleep deprivation has been reported to 
decrease contextual fear memory in the first 5 h after training, 
despite otherwise sufficient sleep, but does not affect tone-cued 
fear memories [152,153].

Spontaneous object recognition studies have shown that both 
object-recognition and object-location memories are impaired 
by 5–6 h of sleep deprivation after training [154-157], with an ap-
parently crucial window at 3–4 h [158]. Another test, which relies 
on undesired water immersion to enable animals to find a secret 
medium for observing the process of spatial learning and is re-
sponsive to hippocampal injury, is also essential for other brain 
regions and strategies [159].

Sleep architecture is also essential for memory, in addition to 
sleep duration. Humans sleep once a day in a consolidated bout 
and advance throughout the night over several periods of REM 
and NREM sleep. Daytime activity is compromised if this is frag-
mented and increased sleepiness occurs [160]. This phenomenon 
is also observed in a study conducted by Gupta et al. [161]. When 
comparing the 4 h drive to the 20 h drive, cognitive performance 
decreased during the night, with driving safety being question-
able, including difficulty driving in the middle of the lane, adher-
ing to the speed limit, and crashing. 

Throughout the day and night, rodents sleep in numerous brief 
bursts consisting of both REM and n-REM sleep, with a sufficient 
amount of sleep during the light period, mainly due to increased 
sleep duration during the day [162]. 

Disturbing daily waking sleep architecture prevents the usual 
completion of sleep bouts, resulting in increased sleep pressure 
despite no improvement in the overall period of sleep [163]. Frag-
mentation of sleep also influences mechanisms of cognition. There 
are low learning and retention in the Morris water maze for mice 
subjected to sleep fragmentation for 15 days [164]. These studies 
indicate that disrupted sleep may lead to impaired performance 
in specific cognitive processes, even though sleep timing and over-
all sleep duration can remain comparable.

Data from mice experiment (missing GluA1) may provide some 
insight into the effects of these synaptic plasticity changes that 

Figure 4. Differences between the changes in biochemical and physiological factors of sleep and wakefulness. SCN: suprachiasmatic 
nuclei.
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take place during sleep. GluA1 deficient mice, such as the Morris 
water-maze, display unimpaired success on associative, long-term 
memory tasks. These species showed selective short-term deficits 
to recently experienced stimuli [165,166]. 

These results indicate that the levels of synaptic GluA1 increase 
during waking, like an ongoing habit and a decrease in attention. 
This hypothesis suggests sleep can be necessary for restoring at-
tentional efficiency [167].

There are multiple effects on cognition based on the time of 
food. Numerous studies have been conducted regarding this is-
sue. Among these, in particular, eating a meal or not eating dur-
ing the night shift to observe the success of attentive and careful 
driving. The performance of those who did not eat the meal dur-
ing the night shift was better than the others [168]. 

Additionally, on the night shift, eating a big meal impairs cog-
nitive efficiency and sleepiness beyond the consequences of night-
time alone. Shift workers can opt for a snack at night for enhanced 
efficiency [161]. 

In conclusion, while the cognitive function is unquestionably 
affected by the disruption of sleep and food timing, the specific 
cognitive processes affected and the underlying mechanisms in-
volved are not straightforward. However, researchers should al-
ways be aware that due to a concomitant disruption of sleep and 
food timing, effects on cognition could arise.

ROLE OF SHIFT WORK, ARTIFICIAL 
LIGHT, AND JET LAG

There are multiple examples in our current world where life-
style clashes with our internal biological clocks, including shift 
work and jet lag. Besides, artificial light results in light emission 
from electronic devices such as phones, tablets, and computers at 
inappropriate times of day, like a light at night, as well as exposure 
to light. As a result, there is rising concern about the effects on hu-
man health of circadian disturbance and aberrant light exposure, 
including impacts on metabolism, cardiovascular function, men-
tal health, and even cancer risk [169-171]. 

A good number of studies have examined the impact of aber-
rant light exposure on cognitive performance. Rodents are used 
under the irregular light and dark (LD) cycles to investigate the 
underlying mechanisms of circadian disruption and correlation 
of adverse health conditions. During the usual subjective night, 
some result in light exposure; while others result in a mismatch be-
tween internal circadian time and external ambient time requir-
ing a constant change of phase.  It has been proposed that the neg-
ative effects of circadian disruption could be the reason for this 
mismatch [169].

To simulate the sudden change in time zones created by jet lag, 
shifting the LD period under which animals are housed has been 
used. A single advance or pause in the LD period is usually in-
volved in acute jet lag protocols. Besides, persistent jet lag, which 
includes frequent LD cycle changes, has also been used as a circa-
dian disturbance model [172].

Approximately 15% to 18% of all workers in Europe and the 
United States work on night shift schedules [173], and 15–30% in 
Korea [174]. Night shift work has become a common occupation. 
It was calculated that the exposure levels of artificial light at night 
(ALAN) to shift staff at night ranged from 50 lx to 100 lx, often 
reaching 200 lx [175]. At night, exposure to ALAN leads to mela-
tonin suppression, clock gene expression changes, and sleep mis-
alignment [174]. Acute suppression of melatonin after 1 hour of 
light exposure to the retina light inhibits sensitivity to melatonin 
by approximately 5% at 30 lx, 15% at 100 lx, 35% at 300 lx, and 
55% at 1000 lx. After exposure to over 10000 lx, maximal suppres-
sion was 70% [176,177].

When tested at waking time, night shift nurses reported signifi-
cantly lower levels of the melatonin metabolite urinary 6-sulfa-
toxymelatonin (aMT6s) than day shift nurses. Night shift workers, 
however, did not exhibit peak levels of melatonin while sleeping 
during the day [178]. During the night, the peak melatonin levels 
occurred among nurses working rotating shifts, and when the 
nurses encountered ALAN levels below 80 lx, melatonin levels 
were not different between night and day shift nurses [179]. In 
night shift workers, a decrease in melatonin suppression was ob-
served, from 40.6% to 22.9%, as the number of recent night shifts 
increased, indicating a phase shift or adaptation to night work [180].

Together, these findings show that using both acute and chron-
ic jet lag protocols, ALAN, and night shift result in subtle changes 
in cognitive processes. However, given the effect of these protocols 
on both sleep fragmentation and arousal, the mechanisms by 
which cognitive processes are influenced are difficult to establish.

CONCLUSION

For a long time, melatonin was thought to be one of the possi-
ble inhibitors of long-term memory formation. However, after ex-
tensive research, it has been established as a neuroprotective hor-
mone that regulates oversleeping, disease progression, circadian 
rhythms, and cognitive processes. 

At a glance, initiation of quality sleep, clock gene regulation, 
circadian rhythm optimization, glymphatic system induction, 
and melatonin are considered a multidirectional compound to 
ensure body hemostasis and memory consolidation.
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