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INTRODUCTION

Melatonin and serotonin are the products of tryptophan me-
tabolism, which are endogenous neurotransmitters and hor-
mones. They are pleiotropic signaling chemicals that regulate a 
variety of physiological processes as well as counteract disease 
and environmental stresses in several species. They act as neu-
rotransmitters, hormones, and bioregulators in insects controlling 
a variety of endocrines, behavioral (including social behavior), 
immunological, developmental, and protective activities, as well 
as biological cycles.

Melatonin is an ancient molecule found in alpha proteobacte-
ria and cyanobacteria, indicating that it has been around since the 
beginning of life. Melatonin (N-acetyl-5-methoxytryptamine), an 
amino acid derivative, is an evolutionary conservative chemical. 
Melatonin is found in algae and higher plants [1], as well as nearly 
every invertebrate group and vertebrates [2].

Bacteria, Eucarya, unicellular and multicellular fungi, plants, 
and animals, including simple and complex vertebrates and in-
vertebrates, all synthesize this pluripotent molecule with differ-
ent effects in nature. Melatonin regulates several endocrines, im-
munological, neurological, metabolic, and defensive activities in 
addition to the circadian rhythm. Many researchers suggest that 
melatonin can be utilized as a health supplement because of its 
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multiple biological properties, including antioxidant, anticancer, 
and antiaging benefits. Melatonin was identified for the first time 
in invertebrates in the compound eyes of an insect, the locust, Lo-
custa migratoria [3] and it was detected using a radioimmunoas-
say, which was then confirmed using gas chromatography-mass 
spectrometry. Furthermore, melatonin is a highly efficient scav-
enger not only in vertebrates but also in insects [4] and dinofla-
gellates [5] of metabolic hydroxyl-radicals.

Serotonin, also an ancient molecule with pluripotent and di-
verse activities, is a result of consecutive metabolic transforma-
tions of L-tryptophan that occur in various species, including ver-
tebrates and invertebrates such as worms, insects, fungi, plants, 
and unicellular organisms.

Several fascinating research studies have revealed serotonin’s 
ubiquitous and overwhelming activities in vertebrates and inver-
tebrates. Although the number of studies on the role of serotonin 
in insects is still few, these studies have already demonstrated the 
critical involvement of serotonin signaling in nearly all key phys-
iological processes in insects. The serotonin transporter (SERT) 
from the fruit fly Drosophila melanogaster was identified as the 
first insect amine transporter.

http://crossmark.crossref.org/dialog/?doi=10.33069/cim.2022.0003&domain=pdf&date_stamp=2022-03-31
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BIOSYNTHESIS OF SEROTONIN AND 
MELATONIN 

Melatonin and serotonin have been discovered in the heads, 
eyes, optic lobes, and brains of various invertebrate species. Sero-
tonin and melatonin are produced in insects via the same path-
ways in vertebrates. Tryptophan-5-hydroxylase-1 (T5H-1) is the 
rate-limiting enzyme in the biosynthesis of serotonin, which is also 
involved in the biosynthesis of melatonin. Melatonin is a natural 
hormone that helps people cope with stressors like cold, heat, UV, 
and pesticides. The direct link between T5H-1 and melatonin and 
the underlying mechanism in organisms has yet to be explored.

Biosynthesis of serotonin
Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine, im-

plying that an aliphatic chain with two carbon oxides separates a 
basic amine group from an aromatic core. The important amino 
acid tryptophan is the first step in synthesizing 5-HT. Tryptophan 
hydroxylase (TPH), also known as tryptophan-5-monooxygen-
ase, adds a hydroxyl group to tryptophan to form 5-hydroxytryp-
tophan (5-HTP) (Figure 1) [6]. The non-heme iron and tetrahy-
drobiopterin-dependent aromatic amino acid hydroxylase family 
includes TPH, phenylalanine hydroxylase (which catalyses the 
hydroxylation of the aromatic side-chain of phenylalanine to pro-
duce tyrosine), and tyrosine hydroxylase (which converts tyro-
sine to 3,4-dihydroxyphenylalanine [DOPA]). Cofactors for 
these enzymes are (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin 
and O2 [7,8].

5-HTP decarboxylase catalyzes the conversion of 5-HTP to 
5-HT in the second phase of 5-HT biosynthesis (Figure 1) [9]. 
5-HTP decarboxylase has been proven to be the same enzyme as 
dopamine decarboxylase, which catalyzes the decarboxylation 
stage in dopamine biosynthesis and is commonly referred to as 
aromatic amino acid decarboxylase (AAAD) [10].

Biosynthesis of melatonin
The pathways of melatonin biosynthesis in insects appear to 

be similar to those seen in vertebrates [2]. The amino acid precur-
sor L-tryptophan is converted to melatonin (N-acetyl-5-methoxy-
tryptamine) by four enzymes: TPH, AAAD, serotonin N-acetyl-
transferase (NAT), and hydroxyindole-O-methyltransfer (HIOMT) 
(Figure 2).

TPH and NAT, two enzymes involved in the multistep conver-
sion of L-tryptophan to N-acetyl-5-ethoxytryptamine, are thought 
to play a critical regulatory role, with the former limiting the for-
mation of 5-HT (serotonin) and the latter limiting the formation 
of melatonin [11-14]. AAAD and HIOMT appear to function pri-
marily by mass action, while their actions may be amenable to 
adaptive control [13]. As an essential amino acid, L-tryptophan 
cannot be synthesized by vertebrate cells and must be obtained 
through the diet, implying dietary composition’s importance in 
the appropriate melatonin synthesis in living animals [12].

5-HTP is formed from tryptophan, decarboxylated to become 
5-HT (serotonin). In the vertebrate pineal gland, 5-HT metabo-
lism follows two primary routes: acetylation, which involves NAT 
activity and results in N-acetylserotonin (NAS), the direct pre-
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cursor of melatonin, and oxidative deamination, which involves 
monoamine oxidase (MAO) activity. N-acetylation is the pre-
dominant enzymatic route at least in insects [15]. NAT is found 
in several species, including insects, where it is involved in the in-
activation of monoamine neurotransmitters and the formation 
of catecholamine intermediates required for sclerotization of the 
insect cuticle. It is unclear what caused the phylogenetic shift from 
N-acetylation to MAO as an enzyme system for biogenic amine 
metabolism. Many insects, however, have evolved to avoid the 
elimination of catecholamine metabolites in aqueous excreta. 
Water conservation in several insect orders has facilitated their 
survival in various hostile environments. The subsequent use of 
monoamines and their N-acetylated metabolites in forming the 
sclerotized cuticle, which reduces water loss could be a partial ex-
planation [16]. The presence of NAT and NAS in the neural tis-
sues of the fly Drosophila has been known for over two decades.

Furthermore, the presence of the enzyme HIOMT, which is 
involved in melatonin production from NAS, has recently been 
suspected in insects. Antibodies produced against the pineal en-
zyme HIOMT, have been found to bind cockroach cells, indicat-
ing an enzymatic feature of the vertebrate pineal gland [17].

EFFECTS OF SEROTONIN AND 
MELATONIN

Effects of serotonin
In both protostomes and deuterostomes, the biogenic amine 

serotonin (5-HT) plays a critical role in regulating and influenc-
ing many physiological and behavioural processes. Its binding 
mediates serotonin’s unique actions to membrane receptors and 
subsequent activation. The great majority of these receptors are 
members of the G-protein-coupled receptor superfamily. The dis-
covery of 5-HT as a key neuromodulator required a collaborative 
effort from multiple research teams. In 1940, during the research 
of constricting factors in the blood that cause hypertension, a se-
rum substance affecting vascular tone was separated and termed 
“serotonin” [18,19].

5-HT was demonstrated to modulate appetite in several insect 
species. Neuromodulatory actions of 5-HT were shown to depress 
feeding in D. melanogaster, while decreased neuronal 5-HT lev-
els increased appetite [20]. 5-HT injection in the hemolymph de-
creased feeding in another dipteran species, the flesh fly Neobel-
lieria bullata [21]. 5-HT inhibits feeding when injected in the brain 
of honey bee, and when injected in the gut excited muscle con-
tractions, although general elevation of 5-HT in the bee’s hemo-
lymph did not affect food intake [22]. Moreover, 5-HT increased 
fluid secretion from salivary glands in Aedes aegypti, the fly Cal-
liphora vicina and the cockroach Periplaneta americana [23-25]. 
5-HT acts as a diuretic hormone in Rhodnius prolixus, it is pro-
duced soon after the initiation of feeding and stimulates rapid tu-
bule secretion [26,27]. 

5-HT also has thorough effects on some aspects of learning and 
memory and is thus a major player in modulating several insect 

behaviors. By inhibiting the serotonergic system in neurons of D. 
melanogaster, appetitive olfactory memory performance was con-
siderably reduced [28]. Flies with genetically or pharmacologi-
cally reduced 5-HT levels in the brain also had a strongly reduced 
memory formation in a behavioral test wherein flies were trained 
to avoid a chamber position associated with high temperature 
[29]. In honey bees, both memory storage and retrieval were re-
duced when 5-HT was injected prior to conditioning [30-32]. In 
the desert locust Schistocerca gregaria, 5-HT and its downstream 
effector molecules were shown to induce gregarious, swarming 
behavior [33,34]. Fruit flies with genetically or pharmacological-
ly elevated 5-HT levels showed higher fighting frequencies and 
more intense fighting than untreated flies [35]. In several dipter-
an species, manipulating serotonin levels with exogenous sero-
tonin or serotonin agonists has been shown to affect feeding prob-
ability, modulate tarsal acceptance thresholds, and change meal 
size [36-39]. Exogenous serotonin injection decreases carbohy-
drate feeding in the grey flesh fly, N. bullata, and the queen blows 
fly, Phormia regina [36,39]. Although many aspects of flies’ feed-
ing physiology have been studied, and many of the nervous path-
ways involved in feeding regulation have been identified, it is still 
unclear how and where serotonin influences feeding [40].

Effects of melatonin
Based on a review of the literature, it appears that the presence 

and synthesis of melatonin in photic and cerebral regions are a 
common trait of all invertebrates. Melatonin is present in the brain 
of Musca autumnalis changes regularly, with peak values seen 
during the dark period of the day-night cycle [41]. NAT activity 
of roughly 20 nmol/brain/hour in the cockroach brain and/or 
optic lobe, which is equivalent to that seen in chicken pineal 
glands at night. NAT does not appear to fluctuate regularly in the 
cockroach, whereas melatonin concentrations appear to be high 
at night and low throughout the day [42].

It has now been established that the pineal gland is involved in 
the transmission of photoperiodic information in vertebrates via 
the daily pattern of melatonin release. Invertebrates and verte-
brates use photoperiodic variations as a time trigger to initiate 
physiological processes such as reproduction and diapause. Mel-
atonin and its precursors or synthesizing enzymes are now well es-
tablished in many organs implicated in photoreceptive processes 
or circadian pacemaking in both vertebrates and invertebrates.

In insects, melatonin synthesis and release follow a circadian 
rhythm influenced by light-dark cycles in the environment, just 
like in vertebrates. Insects use photoperiods as a time cue to start 
postembryonic processes such moulting, eclosion, and diapauses. 
This means they can tell the difference between long and short 
days.

Melatonin levels in insect species like M. autumnalis [41], D. 
melanogaster [43], L. migratoria [3], Gryllus bimaculatus [44], and 
Ischnura verticalis and Enallagma civile [45], R. prolixus [46], Is-
chnura graellsii, and Oedipoda caerulescens [47] or Apis mellifera 
[48] show a circadian rhythm with a scotophase peak typical of 
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vertebrate melatonin production. The brain and optic lobes of 
the cockroach P. americana were described the same [42].

Even though melatonin is found in insects [3,49] and is thought 
to have physiological functions [50-53], the short-day mimicking 
effect was only detected in aphids [51]. Melatonin therapy delayed 
the commencement of oviposition in Pyrrhocoris apterus [50].

Insects benefit from exogenous melatonin because it activates 
the antioxidant defense system in response to a toxic insult. The 
effects of melatonin and its precursor serotonin (5-hydroxytryp-
tamine) on the release of prothoracicotropic hormone (PTTH) 
from the brain of the studied cockroach species in vitro provid-
ed evidence for the first time that melatonin functions as a releas-
er of this glandotropic neuropeptide in this insect [54].

Recently, it has been proposed that the synthesis and release of 
MEL in the head of Spodoptera litura follow a circadian rhythm, 
and that light inhibits its synthesis [55]. In addition, the existence 
and distribution of MEL and 5-HT in Orthoptera’s optic lobes have 
been determined [56].
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