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INTRODUCTION

Rapid eye movement (REM) sleep behavior disorder (RBD) is 
a parasomnia characterized by dream-enacting behaviors associ-
ated with loss of normal muscle atonia during REM sleep [1]. The 
idiopathic RBD (iRBD) has been reported as prodromal biomark-
er for neurodegenerative synucleinopathies, including Parkinson’s 
disease (PD), dementia with Lewy bodies (DLB), and multiple 
system atrophy [2]. To early detect neurodegeneration in preclini-
cal stage, pathophysiological changes of iRBD have been studied 
for two decades. Brain structural studies using magnetic resonance 
imaging (MRI) in iRBD patients suggested alterations in cortical 
and subcortical volume [3-8]. 

The brain works as a network of different brain regions that 
each have their own function. The anatomical connectivity is the 
physical connections or interactions between two anatomical area 
and can be studied with structural imaging in collaboration with 
diffusion tensor tractography methods [9]. In the past few years, 
novel neuroimaging techniques and analysis methods have en-
abled the examination of brain functional connectivity (FC) that 
defined as the temporal dependency of neuronal activation pat-
terns of anatomically separated brain regions [10-12]. 

The resting-state functional MRI (fMRI) was first reported by 
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Biswal et al. [13], showing brain is not silent even during the rest-
ing or relaxing state [11,13]. They showed presence of synchro-
nous low-frequency fluctuations of signal intensities from the rest-
ing human brain that have a high degree of temporal correlation 
both within and across the sensorimotor cortex. And they sug-
gested blood oxygenation level dependent signals play a dominant 
role in the mechanism that gives rise to FC in the resting human 
brain. Since then, several similar studies have shown other FC in 
primary visual network, auditory network, and cognitive networks 
[14-18]. This review summarizes the existing research on the FC 
studies in iRBD patients focused on resting-state fMRI.

RESTING-STATE fMRI STUDIES IN iRBD 
PATIENTS

We searched in the PubMed database for literature using rest-
ing-state fMRI in patients with iRBD. Keywords were “(resting-
state functional magnetic resonance imaging OR resting-state 
fMRI) AND (rapid eye movement sleep behavior disorder OR 
REM sleep behavior disorder OR RBD).” A total number of 39 
studies were searched, and we excluded studies that were not writ-
ten in English; reviews; not related to our main topic. After remov-
ing, selected articles were 13 (Table 1). 

http://crossmark.crossref.org/dialog/?doi=10.33069/cim.2024.0005&domain=pdf&date_stamp=2024-03-29
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Methodologically, voxel-based connectivity analyses were ap-
plied in 11 reviewed studies [19-29] and node-based connectivi-
ty analyses were applied in 2 studies [30,31]. The voxel-based anal-
yses models estimate FC values between specific regions of interest 
and all the other voxels in the whole brain, performing the spatial 
organization of large-scale resting-state networks. The node-base 
analyses are graph-based connectivity models represented by two 
concepts: node (i.e., different brain areas) and edges (i.e., connec-
tions between considered regions) [32].

Early two studies, using a voxel-based analysis, showed FC 
change in networks involving substantia nigra [19] and basal 
ganglia [20]. These results served as evidence that resting-state 
fMRI studies could be used as an early biomarker for synucleinop-
athies, but it was unclear whether they were a result of damaged 
connectivity by synucleinopathy pathology. There were follow-up 
studies that also showed abnormalities in motor-related networks 
using another analysis method like regional homogeneity (ReHo) 
and independent component analyses (ICA) [22,24,25].

In the preclinical stage of synucleinopathies like PD, compen-
satory mechanisms may take place to delay the clinical onset of 
motor symptoms by counteracting nigrostriatal dysfunction. Basal 
ganglia, cortical premotor areas, thalamus, and cerebellum had 
been suggested as key regions in those mechanisms [28,33-35]. 
Recently, some studies showed that there were FC changes relat-
ed in the PD compensatory mechanisms. Byun et al. [21] showed 
increased FC between the left thalamus and occipital regions and 
Chen et al. [28] reported higher amplitude of low-frequency fluc-
tuations (ALFF) values in right parahippocampal gyrus that was 
already known association with iRBD in positron emission to-
mography FC study [36]. 

iRBD is often accompanied by cognitive decline involving ex-
ecutive, visuospatial, attention, and memory functions [37]. A 
pioneering study by Rolinski et al. [20] showed that FC change 
did not correlate with changes in cognitive function. But many 
recent studies using other analyses methods showed FC change 
in cognitive related brain regions including thalamo-fusiform FC 
[21], striatal-prefrontal FC [25], striatal-cortical FC [26], and nu-
cleus basalis of Meynert with the left lateral occipital cortex and 
lingual gyrus [27]. And these results were correlated with neuro-
cognitive results. 

The pathophysiology of PD non-motor symptoms is not yet 
clear. Recently, several studies showed FC changes related in non-
motor symptoms such as olfactory and autonomic dysfunction. 
Chen et al. [28] reported negative correlation between olfactory 
function and ALFF in right superior occipital gyrus. Woo et al. 
[29] showed hypoconnectivities with the left olfactory cortex and 
left amygdala, increased functional connectivity with the left gy-
rus rectus. FC change related to autonomic dysfunction was re-
ported by Li et al. [24]. They showed reduced functional connec-
tivity between the brainstem and the cerebellum posterior lobe, 
temporal lobe and anterior cingulate. And these FC findings were 
negatively correlated with the Scales for Outcomes in Parkinson’s 
Disease-Autonomic scores. Ta
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CONCLUSIONS 

As the aging population increases, the prevention and treat-
ment of neurodegenerative diseases is important. Identifying brain 
changes in iRBD patients, known as a prodromal biomarker of 
synucleinopathies, gives us much important evidence for early 
treatment in preclinical stage. Because the brain works in a net-
work system, structural and functional connectivity studies are 
important in neuropsychological disease. In future study, longi-
tudinal designs are needed to know the temporal and causal rela-
tions between FC changes and conversion to synucleinopathies. 
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